Version  1.0
 File Size  771 kb
 File Count  1
 Create Date  August 20, 2022
 Update Date  August 20, 2022
 Telegram  Join Now

You have to wait 15 seconds.

Summary of Non-Aqueous Titration

A typical titration begins with a beaker or Erlenmeyer flask containing a very precise amount of the analyte and a small amount of indicator (such as phenolphthalein) placed underneath a calibrated burette or chemistry pipetting syringe containing the titrant. Small volumes of the titrant are then added to the analyte and indicator until the indicator changes color in reaction to the titrant saturation threshold, representing arrival at the endpoint of the titration, meaning the amount of titrant balances the amount of analyte present, according to the reaction between the two. Depending on the endpoint desired, single drops or less than a single drop of the titrant can make the difference between a permanent and temporary change in the indicator.[further explanation needed]

Preparation techniques
Typical titrations require titrant and analyte to be in a liquid (solution) form. Though solids are usually dissolved into an aqueous solution, other solvents such as glacial acetic acid or ethanol are used for special purposes (as in petrochemistry, which specializes in petroleum.) Concentrated analytes are often diluted to improve accuracy.

Many non-acid–base titrations require a constant pH during the reaction. Therefore, a buffer solution may be added to the titration chamber to maintain the pH.

In instances where two reactants in a sample may react with the titrant and only one is the desired analyte, a separate masking solution may be added to the reaction chamber which eliminates the effect of the unwanted ion.

Some reduction-oxidation (redox) reactions may require heating the sample solution and titrating while the solution is still hot to increase the reaction rate. For instance, the oxidation of some oxalate solutions requires heating to 60 °C (140 °F) to maintain a reasonable rate of reaction.

Titration curves
A typical titration curve of a diprotic acid titrated with a strong base. Shown here is oxalic acid titrated with sodium hydroxide. Both equivalence points are visible. A titration curve is a curve in graph the x-coordinate of which represents the volume of titrant added since the beginning of the titration, and the y-coordinate of which represents the concentration of the analyte at the corresponding stage of the titration (in an acid–base titration, the y-coordinate usually represents the pH of the solution).

In an acid–base titration, the titration curve represents the strength of the corresponding acid and base. For a strong acid and a strong base, the curve will be relatively smooth and very steep near the equivalence point. Because of this, a small change in titrant volume near the equivalence point results in a large pH change and many indicators would be appropriate (for instance litmus, phenolphthalein or bromothymol blue).

If one reagent is a weak acid or base and the other is a strong acid or base, the titration curve is irregular and the pH shifts less with small additions of titrant near the equivalence point. For example, the titration curve for the titration between oxalic acid (a weak acid) and sodium hydroxide (a strong base) is pictured. The equivalence point occurs between pH 8-10, indicating the solution is basic at the equivalence point and an indicator such as phenolphthalein would be appropriate. Titration curves corresponding to weak bases and strong acids are similarly behaved, with the solution being acidic at the equivalence point and indicators such as methyl orange and bromothymol blue being most appropriate.

Titrations between a weak acid and a weak base have titration curves which are very irregular. Because of this, no definite indicator may be appropriate and a pH meter is often used to monitor the reaction.